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Abstract
We show that a suitable coset algebra, constructed in terms of an extension
of the Zamolodchikov–Faddeev algebra, is homomorphic to the reflection–
transmission algebra, as it appears in the study of integrable systems with
impurity.

PACS number: 02.30.Ik

1. Introduction

The Zamolodchikov–Faddeev (ZF) algebra [1, 2] is considered to be the basis of factorized
scattering theory in integrable models. The two-body scattering, which is the only particle
interaction present in this case, is implemented by a quadratic constraint among the particle
creation and annihilation operators. There exist various attempts [3–10] to generalize
factorized scattering theory to the case when point-like impurities, preserving integrability,
are present as well. In this context, the relevant algebraic structure emerging recently
[11, 12], is the so-called reflection–transmission (RT) algebra. Besides the two-body scattering
in the bulk, the RT algebra also captures the particle interaction with the impurity. From the
physical analysis performed in [11], it follows that the particle–impurity interactions are
implemented by further constraints, ensuring compatibility between bulk scattering and the
process of reflection/transmission from the impurity. This feature suggests the existence of
an algebraic connection among ZF and RT algebras. It turns out in fact that taking the
coset of the ZF algebra with respect to a suitable two-sided ideal, one obtains an algebra
homomorphic to the RT algebra. The explicit realization of this relationship is the main goal
of this investigation. Our analysis extends the results of [13, 14], obtained in the case of pure
reflection. Establishing the link between ZF and RT algebras, we take the occasion to discuss
also the issue of symmetries when impurities are present.
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2. Background

We collect here some definitions and basic results concerning ZF and RT algebras, which
are needed in what follows. Adopting throughout the paper the compact tensor notation,
introduced in [15], we start with the following definition.

Definition 2.1 (ZF algebra AS). AS is the polynomial algebra generated by a unit element 1
and the generators a(k) and a†(k), subject to the constraints

a1(k1)a
†
2(k2) = a

†
2(k2)S12(k1, k2)a1(k1) + δ12δ(k1 − k2)1 (2.1)

a1(k1)a2(k2) = S21(k2, k1)a2(k2)a1(k1) (2.2)

a
†
1(k1)a

†
2(k2) = a

†
2(k2)a

†
1(k1)S21(k2, k1). (2.3)

Here and below the S-matrix obeys the following well-known relations (Yang–Baxter equation
and unitarity):

S12(k1, k2)S13(k1, k3)S23(k2, k3) = S23(k2, k3)S13(k1, k3)S12(k1, k2) (2.4)

S12(k1, k2)S21(k2, k1) = I ⊗ I. (2.5)

We emphasize that S depends in general on χ1 and χ2, observing in addition that bulk S-
matrices depending on χ1 − χ2 only are also covered by our framework, which therefore
allows us to treat both systems with exact as well as broken Lorentz (Galilean) invariance.
More details about the physical meaning of this generalization are given in [12].

We shall employ below the extension AS of AS , involving power series in a(k) and a†(k)

whose individual terms preserve the particle number. The concept of extended ZF (EZF)
algebra AS is relevant for proving [15] the following.

Proposition 2.2 (Well-bred operators). EachAS contains an invertible element L(k) satisfying

L1(k1)a2(k2) = S21(k2, k1)a2(k2)L1(k1) (2.6)

L1(k1)a
†
2(k2) = a

†
2(k2)S12(k1, k2)L1(k1). (2.7)

Moreover, L(k) obeys

S12(k1, k2)L1(k1)L2(k2) = L2(k2)L1(k1)S12(k1, k2) (2.8)

and generates a quantum group US ⊂ AS , with Hopf structure �L(k) = L(k) ⊗ L(k). L(k)

also satisfies L(k)† = L(k)−1.

L(k), called a well-bred operator, is explicitly constructed in [15] and admits a series
representation in terms of a(k) and a†(k).

We turn now to RT algebras [12].

Definition 2.3 (RT algebra CS). A RT algebra is generated by 1 and the generators A(k),
A†(k), t (k) and r(k) obeying

A1(k1)A2(k2) = S21(k2, k1)A2(k2)A1(k1) (2.9)

A
†
1(k1)A

†
2(k2) = A

†
2(k2)A

†
1(k1)S21(k2, k1) (2.10)
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A1(k1)A
†
2(k2) = A

†
2(k2)S12(k1, k2)A1(k1) + δ(k1 − k2)(δ121 + t12(k1)) + r12(k1)δ(k1 + k2)

(2.11)

A1(k1)t2(k2) = S21(k2, k1)t2(k2)S12(k1, k2)A1(k1) (2.12)

A1(k1)r2(k2) = S21(k2, k1)r2(k2)S12(k1,−k2)A1(k1) (2.13)

t1(k1)A
†
2(k2) = A

†
2(k2)S21(k2, k1)t1(k1)S21(k2, k1) (2.14)

r1(k1)A
†
2(k2) = A

†
2(k2)S21(k2, k1)r1(k1)S21(k2,−k1) (2.15)

S12(k1, k2)t1(k1)S21(k2, k1)t2(k2) = t2(k2)S12(k1, k2)t1(k1)S21(k2, k1) (2.16)

S12(k1, k2)t1(k1)S21(k2, k1)r2(k2) = r2(k2)S12(k1,−k2)t1(k1)S21(−k2, k1) (2.17)

S12(k1, k2)r1(k1)S21(k2,−k1)r2(k2) = r2(k2)S12(k1,−k2)r1(k1)S21(−k2,−k1) (2.18)

where r(k) and t (k) satisfy

t (k)t (k) + r(k)r(−k) = 1 (2.19)

t (k)r(k) + r(k)t (−k) = 0. (2.20)

We refer to r(k) and t (k) as reflection and transmission generators.
A special case of RT algebra is the boundary algebra BS [16] defined as the coset of

CS by the relation t (k) = 0. More precisely, one defines the left ideal IS = CS · {t (k)}.
From the above relations, this left ideal is obviously a two-sided ideal, so that the coset
CS/IS is an algebra: it is the boundary algebra BS , whose defining relations are given by
equations (2.9)–(2.19) with t (k) = 0.

Note that the same construction applies when r(k) = 0, leading to an algebra associated
with a purely transmitting impurity [17].

Note also that the generators r(k) and t (k) form a subalgebra KS ⊂ CS . This subalgebra
itself contains two subalgebras. The subalgebra RS ⊂ KS , generated by r(k), has already
appeared in [18] and is called the reflection algebra. In the same way, t (k) generates a
subalgebra T S ⊂ KS , called in analogy the transmission algebra.

3. From AS to CS

Let R(k) and T (k) be any two matrix functions satisfying

R†(k) = R(−k) T †(k) = T (k) (3.1)

T (k)T (k) + R(k)R(−k) = I (3.2)

T (k)R(k) + R(k)T (−k) = 0 (3.3)

and the boundary Yang–Baxter equation

S12(k1, k2)R1(k1)S21(k2,−k1)R2(k2) = R2(k2)S12(k1,−k2)R1(k1)S21(−k2,−k1). (3.4)

It has been shown in [12] that R(k) and T (k) obey in addition the transmission and reflection–
transmission Yang–Baxter equations

S12(k1, k2)T1(k1)S21(k2, k1)T2(k2) = T2(k2)S12(k1, k2)T1(k1)S21(k2, k1) (3.5)

S12(k1, k2)T1(k1)S21(k2, k1)R2(k2) = R2(k2)S12(k1,−k2)T1(k1)S21(−k2, k1). (3.6)
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This remarkable property of the pair {R(k), T (k)} was discovered in [12] and is fundamental
in what follows. In fact, by a direct calculation, starting from the EZF algebra AS , one
proves:

Proposition 3.1. Let

t (k) = L(k)T (k)L−1(k) (3.7)

r(k) = L(k)R(k)L−1(−k) (3.8)

where L(k) is the well-bred operator of AS and R(k) and T (k) are defined above. Then,
a(k), a†(k), t (k) and r(k) obey the relations (2.12)–(2.20).

Proposition 3.2. The map

ρ

{
a(k) → α(k) = t (k)a(k) + r(k)a(−k)

a†(k) → α†(k) = a†(k)t (k) + a†(−k)r(−k)
(3.9)

extends to a homomorphism on AS .

Proof. Direct calculation using the commutation relations of the ZF algebra and the equations
obeyed by R(k) and T (k). �

Let us remark that we have the identities

a(k) = t (k)α(k) + r(k)α(−k) (3.10)

a†(k) = α†(k)t (k) + α†(−k)r(−k). (3.11)

However, since t (k) and r(k) are still expressed in terms of a(k) and a†(k), these are not really
‘inversion formulae’.

Note that α(k), α†(k), t (k) and r(k) also obey the relations (2.12)–(2.20).
The homomorphism ρ is essential for constructing an RT algebra from EZF. Indeed, we

have:

Theorem 3.3. Let

A(k) = 1
2 (a(k) + α(k)) = 1

2 ([1 + t (k)]a(k) + r(k)a(−k)) (3.12)

A†(k) = 1
2 (a†(k) + α†(k)) = 1

2 (a†(k)[1 + t (k)] + a†(−k)r(−k)). (3.13)

Then A(k),A†(k), t (k) and r(k) form a RT algebra.

Proof. Direct calculation. �

Note, en passant, that if one imposes on R(k) the additional relation R(k)R(−k) = I, one
gets T (k) = 0 and one recovers the construction [13] of the boundary algebra BS . Let us also
stress that ρ is not identity on the algebra generated by A(k),A†(k), t (k) and r(k). However,
we have the following theorem.

Theorem 3.4. The coset of AS by the relation ρ = id is a RT algebra.

Proof. By coset by the relation ρ = id, we mean the coset by the two-sided ideal generated
by Im(ρ − id): this coset is obviously an algebra. A(k) and A†(k) defined in theorem 3.3 can



Interplay between Zamolodchikov–Faddeev and reflection–transmission algebras 429

be taken as a representative of a generating system for the coset which is thus homomorphic
to the RT algebra. �

To conclude this section, let us remark that, in the EZF algebra, one has the identities:

A(k) = t (k)A(k) + r(k)A(−k) (3.14)

A†(k) = A†(k)t (k) + A†(−k)r(−k). (3.15)

These identities show that for the RT algebra constructed in theorem 3.3, the reflection–
transmission automorphism (as it was introduced in [12]) is indeed the identity, in agreement
with theorem 3.4. However, this automorphism (defined only on the RT algebra) must not be
confused with the above homomorphism ρ, defined on the whole EZF algebra.

4. Hamiltonians and their symmetries

It is known that one can associate with any ZF algebra a natural hierarchy of Hamiltonians

H
(n)
ZF =

∫
R

dk kna†(k)a(k) n ∈ Z+. (4.1)

They obey
[
H

(n)
ZF ,H

(m)
ZF

] = 0 (so that they can indeed be considered as Hamiltonians) and
admit as symmetry algebra the quantum group generated by the well-bred operators:[

H
(n)
ZF , L(k)

] = 0 ∀n. (4.2)

Note that we have the identity

H
(2n)
ZF =

∫
R

dk k2na†(k)a(k) =
∫

R

dk k2nα†(k)α(k) (4.3)

which shows that ρ
(
H

(2n)
ZF

) = H
(2n)
ZF , so that H

(2n)
ZF survives the coset of AS by ρ = id .

In a similar way, for any RT algebra, we introduce

H
(n)
RT =

∫
R

dk knA†(k)A(k). (4.4)

These Hamiltonians can be viewed as the representative of H
(n)
ZF in the coset algebra of

theorem 3.4. They obey the following relations:[
H

(m)
RT ,H

(n)
RT

] = [(−1)m − (−1)n]
∫

R

dk km+nA†(k)r(k)A(−k). (4.5)

It shows that Hamiltonians of the same parity form a commutative algebra, and thus define
a hierarchy corresponding to the integrable systems with impurity, in accordance with
equation (4.3). They act on A(k) and A†(k) as[

H
(n)
RT , A(k)

] = −kn([I + t (k)]A(k) + (−1)nr(k)A(−k)) (4.6)[
H

(n)
RT , A†(k)

] = kn(A†(k)[I + t (k)] + (−1)nA†(−k)r(−k)). (4.7)

Then, by a direct calculation and without using the embedding CS ⊂ AS , one proves:

Proposition 4.1. The subalgebra KS is a symmetry algebra of the hierarchy H
(n)
RT :[

H
(n)
RT , t (k)

] = 0 and
[
H

(n)
RT , r(k)

] = 0. (4.8)
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This result provides an universal model-independent description of the symmetry content of
the hierarchy H

(n)
RT . It is quite remarkable that r(k) and t (k) encode both the particle–impurity

interactions and the quantum integrals of motion. This property of KS has already been applied
[19] with success for studying the symmetries of the gl(N)-invariant nonlinear Schrödinger
equation on the half line.

Finally, using the embedding of the RT algebra into AS , one shows the following.

Proposition 4.2. When considering the embedding CS ⊂ AS , the subalgebra KS becomes a
Hopf coideal of the quantum group US , i.e. in algebraic terms one has KS ⊂ US and

�(KS) ⊂ US ⊗ KS (4.9)

where � is the the coproduct of US .

Proof. The construction (3.7) and (3.8) ensures the algebra embedding. Using the coproduct
of US , one gets

�[tab(k)] =
∑
x,y

Lax(k)L−1
yb (k) ⊗ txy(k) (4.10)

�[rab(k)] =
∑
x,y

Lax(k)L−1
yb (−k) ⊗ rxy(k). (4.11)

�

Let us observe in conclusion that there is a simple relation between the hierarchies with
and without impurity, which reads

H
(n)
RT = H

(n)
ZF +

∫
R

dk kna†(k)(r(k)a(−k) + t (k)a(k)). (4.12)

Equation (4.12) generalizes the result of [14] for the boundary algebra BS .

5. Conclusions

The results of this paper clarify the connection between EZF and RT algebras. We have shown
above that a suitable coset algebra, constructed in terms of the EZF algebra, is homomorphic
to the RT algebra. This feature provides a precise mathematical meaning of the physical
observation [11, 12] that the introduction of an impurity, preserving the integrability of a
system, is equivalent to imposing some supplementary constraints on the system. The latter
implement the consistency between the scattering in the bulk and the interaction with the
impurity.
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